Abstract
The aim of this work is to establish the existence of multi-peak solutions for the following class of quasilinear problems $$ - \mbox{div} \bigl(\epsilon^{2}\phi\bigl(\epsilon|\nabla u|\bigr)\nabla u \bigr) + V(x)\phi\bigl(\vert u\vert\bigr)u = f(u)\quad\mbox{in } \mathbb{R}^{N}, $$ where $\epsilon$ is a positive parameter, $N\geq2$ , $V$ , $f$ are continuous functions satisfying some technical conditions and $\phi$ is a $C^{1}$ -function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.