Abstract
We consider discretizations of the hyper-singular integral operator on closed surfaces and show that the inverses of the corresponding system matrices can be approximated by blockwise low-rank matrices at an exponential rate in the block rank. We cover in particular the data-sparse format of $\mathcal{H}$-matrices. We show the approximability result for two types of discretizations. The first one is a saddle point formulation, which incorporates the constraint of vanishing mean of the solution. The second discretization is based on a stabilized hyper-singular operator, which leads to symmetric positive definite matrices. In this latter setting, we also show that the hierarchical Cholesky factorization can be approximated at an exponential rate in the block rank.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.