Abstract

We are concerned with a stochastic mean curvature flow of graphs over a periodic domain of any space dimension. For the first time, we are able to construct martingale solutions which satisfy the equation pointwise and not only in a generalized (distributional or viscosity) sense. Moreover, we study their large-time behavior. Our analysis is based on a viscous approximation and new global bounds, namely, an L^{infty }_{omega ,x,t} estimate for the gradient and an L^{2}_{omega ,x,t} bound for the Hessian. The proof makes essential use of the delicate interplay between the deterministic mean curvature part and the stochastic perturbation, which permits to show that certain gradient-dependent energies are supermartingales. Our energy bounds in particular imply that solutions become asymptotically spatially homogeneous and approach a Brownian motion perturbed by a random constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.