Abstract
Let (X/Z,B+A) be a Q-factorial dlt pair where B,A≥0 are Q-divisors and K X +B+A∼ Q 0/Z. We prove that any LMMP/Z on K X +B with scaling of an ample/Z divisor terminates with a good log minimal model or a Mori fibre space. We show that a more general statement follows from the ACC for lc thresholds. An immediate corollary of these results is that log flips exist for log canonical pairs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.