Abstract
We generate jammed packings of monodisperse circular hard-disks in two dimensions using the Torquato-Jiao sequential linear programming algorithm. The packings display a wide diversity of packing fractions, average coordination numbers, and order as measured by standard scalar order metrics. This geometric-structure approach enables us to show the existence of relatively large maximally random jammed (MRJ) packings with exactly isostatic jammed backbones and a packing fraction (including rattlers) of [Formula: see text]. By contrast, the concept of random close packing (RCP) that identifies the most probable packings as the most disordered misleadingly identifies highly ordered disk packings as RCP in 2D. Fundamental structural descriptors such as the pair correlation function, structure factor, and Voronoi statistics show a strong contrast between the MRJ state and the typical hyperstatic, polycrystalline packings with [Formula: see text] that are more commonly obtained using standard packing protocols. Establishing that the MRJ state for monodisperse hard disks is isostatic and qualitatively distinct from commonly observed polycrystalline packings contradicts conventional wisdom that such a disordered, isostatic packing does not exist due to a lack of geometrical frustration and sheds light on the nature of disorder. This prompts the question of whether an algorithm may be designed that is strongly biased toward generating the monodisperse disk MRJ state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.