Abstract

Let $\varphi\in C^0 \cap W^{1,2}(\Sigma, X)$ where $\Sigma$ is a compact Riemann surface, $X$ is a compact locally CAT(1) space, and $W^{1,2}(\Sigma,X)$ is defined as in Korevaar-Schoen. We use the technique of harmonic replacement to prove that either there exists a harmonic map $u:\Sigma \to X$ homotopic to $\varphi$ or there exists a conformal harmonic map $v:\mathbb S^2 \to X$. To complete the argument, we prove compactness for energy minimizers and a removable singularity theorem for conformal harmonic maps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.