Abstract
This paper is dedicated to the study of viscous compressible barotropic fluids in dimension N ≧ 2. We address the question of the global existence of strong solutions for initial data close to a constant state having critical Besov regularity. First, this article shows the recent results of Charve and Danchin (Arch Ration Mech Anal 198(1):233–271, 2010) and Chen et al. (Commun Pure Appl Math 63:1173–1224, 2010) with a new proof. Our result relies on a new a priori estimate for the velocity that we derive via the intermediary of the effective velocity, which allows us to cancel out the coupling between the density and the velocity as in Haspot (Well-posedness in critical spaces for barotropic viscous fluids, 2009). Second, we improve the results of Charve and Danchin (2010) and Chen et al. (2010) by adding as in Charve and Danchin (2010) some regularity on the initial data in low frequencies. In this case we obtain global strong solutions for a class of large initial data which rely on the results of Hoff (Arch Rational Mech Anal 139:303–354, 1997), Hoff (Commun Pure Appl Math 55(11):1365–1407, 2002), and Hoff (J Math Fluid Mech 7(3):315–338, 2005) and those of Charve and Danchin (2010) and Chen et al. (2010). We conclude by generalizing these results for general viscosity coefficients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.