Abstract

In a previous article, we have proved a result asserting the existence of a compatible family of Galois representations containing a given crystalline irreducible odd two-dimensional representation. We apply this result to establish new cases of the Fontaine-Mazur conjecture, namely, an irreducible Barsotti-Tate $\lambda$-adic 2-dimensional Galois representation unramified at 3 and such that the traces $a_p$ of the images of Frobenii verify $\Q(\{a_p^2 \}) = \Q $ always comes from an abelian variety. We also show the non-existence of irreducible Barsotti-Tate 2-dimensional Galois representations of conductor 1 and apply this to the irreducibility of Galois representations on level 1 genus 2 Siegel cusp forms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call