Abstract
In this paper, we establish the existence of extremals for two kinds of Stein–Weiss inequalities on the Heisenberg group. More precisely, we prove the existence of extremals for the Stein–Weiss inequalities with full weights in Theorem 1.1 and the Stein–Weiss inequalities with horizontal weights in Theorem 1.4. Different from the proof of the analogous inequality in Euclidean spaces given by Lieb [26] using Riesz rearrangement inequality which is not available on the Heisenberg group, we employ the concentration compactness principle to obtain the existence of the maximizers on the Heisenberg group. Our result is also new even in the Euclidean case because we don't assume that the exponents of the double weights in the Stein–Weiss inequality (1.1) are both nonnegative (see Theorem 1.3 and more generally Theorem 1.5). Therefore, we extend Lieb's celebrated result of the existence of extremal functions of the Stein–Weiss inequality in the Euclidean space to the case where the exponents are not necessarily both nonnegative (see Theorem 1.3). Furthermore, since the absence of translation invariance of the Stein–Weiss inequalities, additional difficulty presents and one cannot simply follow the same line of Lions' idea to obtain our desired result. Our methods can also be used to obtain the existence of optimizers for several other weighted integral inequalities (Theorem 1.5).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.