Abstract
Systems of nonlinear parabolic initial boundary value problems arise in many applications, such as epidemies, ecology, biochemistry, biology, chemical and nuclear engineering. Constructive methods of proving existence results for such problems, which can also provide numerical procedures for the computation of solutions, are of greater value than theoretical existence results. The method of upper and lower solutions coupled with monotone iterative technique has been employed successfully to prove existence of multiple solutions of nonlinear reaction-diffusion equations, in special cases, by various authors [335, 10, 11, 15, 181. Recently, in [6, 171 weakly coupled systems of reaction-diffusion equations, when the nonlinear terms are independent of gradient terms, are discussed and some special type of results are obtained. We, in this paper, investigate general systems of nonlinear reaction-diffusion problems when the nonlinear terms possess a mixed quasi-monotone property. We discuss a very general situation and obtain coupled extremal quasi-solutions, which in special cases reduce to minimal and maximal solutions. We shall also indicate how one-step cyclic monotone iterative schemes can be generated which yield accelerated rate of convergence of iterates. This work is in the spirit of our recent paper [12] for elliptic systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.