Abstract
The main aim of this paper is to study the Aw–Rascle–Zhang (ARZ) model with non-conservative local point constraint on the density flux introduced in [10], its motivation being, for instance, the modeling of traffic across a toll gate. We prove the existence of weak solutions under assumptions that result to be more general than those required in [11]. More precisely, we do not require that the waves of the first characteristic family have strictly negative speeds of propagation. The result is achieved by showing the convergence of a sequence of approximate solutions constructed via the wave-front tracking algorithm. The case of solutions attaining values at the vacuum is considered. We also present an explicit numerical example to describe some qualitative features of the solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.