Abstract
We prove that every closed oriented smooth 4-manifold X admits a broken Lefschetz fibration (aka singular Lefschetz fibration) over the 2-sphere. Given any closed orientable surface F of square zero in X, we can choose the fibration so that F is a fiber component. Moreover, we can arrange it so that there is only one Lefschetz critical point when the Euler characteristic e(X) is odd, and none when e(X) is even. We make use of topological modifications of smooth maps with fold and cusp singularities due to Saeki and Levine, and thus, we get alternative proofs of previous existence results. Also shown is the existence of broken Lefschetz pencils with connected fibers on any near-symplectic 4-manifold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.