Abstract

Motivated by recent known results about the solvability of nonlinear functional integral equations in one, two or N variables, this paper proves the existence of asymptotically stable solutions for a mixed functional integral equation in N variables with values in a general Banach space via a fixed point theorem of Krasnosels'kiĭ type. In order to illustrate the results obtained here, an example is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.