Abstract

The existence of anti-periodic solutions for a class of first order nonlinear evolution inclusions defined in the framework of an evolution triple of spaces is considered. We study the problems under both convexity and nonconvexity conditions on the multivalued right-hand side. The main tools in our study are the maximal monotone property of the derivative operator with anti-periodic conditions, the surjectivity result for L-pseudomonotone operators and continuous extreme selection results from multivalued analysis. An example of a nonlinear parabolic problem is given to illustrate our results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.