Abstract
We are concerned with the following nonlinear elliptic equations of the fractional $p$-Laplace type: \begin{equation*} \begin{cases} (-\Delta)_p^su \in \lambda[\underline{f}(x,u(x)), \overline{f}(x,u(x))] &\textmd{in } \Omega, u= 0 &\text{on } \mathbb{R}^N\setminus\Omega, \end{cases} \end{equation*} where $(-\Delta)_p^s$ is the fractional $p$-Laplacian operator, $\lambda$ is a parameter, $0< s< 1< p< +\infty$, $sp< N$, and the measurable functions $\underline{f}$, $ \overline{f}$ are induced by a possibly discontinuous at the second variable function $f\colon \Omega\times\mathbb R \to \mathbb R$. By using the Berkovits-Tienari degree theory for upper semicontinuous set-valued operators of type (S$_+)$ in reflexive Banach spaces, we show that our problem with the discontinuous nonlinearity $f$ possesses at least one nontrivial weak solution. In addition, we show the existence of two nontrivial weak solutions in which one has negative energy and another has positive energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.