Abstract

We are concerned with the following nonlinear elliptic equations of the fractional $p$-Laplace type: \begin{equation*} \begin{cases} (-\Delta)_p^su \in \lambda[\underline{f}(x,u(x)), \overline{f}(x,u(x))] &\textmd{in } \Omega, u= 0 &\text{on } \mathbb{R}^N\setminus\Omega, \end{cases} \end{equation*} where $(-\Delta)_p^s$ is the fractional $p$-Laplacian operator, $\lambda$ is a parameter, $0< s< 1< p< +\infty$, $sp< N$, and the measurable functions $\underline{f}$, $ \overline{f}$ are induced by a possibly discontinuous at the second variable function $f\colon \Omega\times\mathbb R \to \mathbb R$. By using the Berkovits-Tienari degree theory for upper semicontinuous set-valued operators of type (S$_+)$ in reflexive Banach spaces, we show that our problem with the discontinuous nonlinearity $f$ possesses at least one nontrivial weak solution. In addition, we show the existence of two nontrivial weak solutions in which one has negative energy and another has positive energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call