Abstract
We investigate the property of positive solutions of a predator-prey model with Dinosaur functional response under Dirichlet boundary conditions. Firstly, using the comparison principle and fixed point index theory, the sufficient conditions and necessary conditions on coexistence of positive solutions of a predator-prey model with Dinosaur functional response are established. Secondly, by virtue of bifurcation theory, perturbation theory of eigenvalues, and the fixed point index theory, we establish the bifurcation of positive solutions of the model and obtain the stability and multiplicity of the positive solution under certain conditions. Furthermore, the local uniqueness result is studied whenbanddare small enough. Finally, we investigate the multiplicity, uniqueness, and stability of positive solutions whenk>0is sufficiently large.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.