Abstract

The study of dynamic fracture is based on the dynamic energy-dissipation balance. It is easy to see that this condition is always satisfied by a stationary crack together with a displacement satisfying the system of elastodynamics. Therefore to predict crack growth a further principle is needed. In this paper we introduce a weak maximal dissipation condition that, together with elastodynamics and energy balance, provides a model for dynamic fracture, at least within a certain class of possible crack evolutions. In particular, we prove the existence of dynamic fracture evolutions satisfying this condition, subject to smoothness constraints, and exhibit an explicit example to show that maximal dissipation can indeed rule out stationary cracks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call