Abstract

The Cahn–Hilliard reaction model, a nonlinear, evolutionary PDE, was introduced to model phase separation in lithium-ion batteries. Using Butler–Volmer kinetics for electrochemical consistency, this model allows lithium-ions to enter the domain via a nonlinear Robin-type boundary condition ∂νμ=R(c,μ)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\partial _\ u \\mu = R(c,\\mu )$$\\end{document} for the chemical potential μ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mu $$\\end{document}, with c, the lithium-ion density. Importantly, R depends exponentially on μ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mu $$\\end{document}. Fixed point methods are applied to obtain existence of regular solutions of the Cahn–Hilliard reaction model in dimension 3, allowing for recovery of exponential boundary conditions as in the physical application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call