Abstract

We theoretically investigate general existence conditions for broadband bulk large-wavevector (high- k ) propagating waves (such as volume plasmon polaritons in hyperbolic metamaterials) in arbitrary subwavelength periodic multilayers structures. Treating the elementary excitation in the unit cell of the structure as a generalized resonance pole of reflection coefficient and using Bloch’s theorem, we derive analytical expressions for the band of large-wavevector propagating solutions. We apply our formalism to determine the high- k band existence in two important cases: the well-known metaldielectric and recently introduced graphene-dielectric stacks. We confirm that short-range surface plasmons in thin metal layers can give rise to hyperbolic metamaterial properties and demonstrate that long-range surface plasmons cannot. We also show that graphene-dielectricmultilayers tend to support high- k waves and explore the range of parameters, where this is possible, confirming the prospects of using graphene for materials with hyperbolic dispersion. The suggested formalism is applicable to a large variety of structures, such as continuous or structured microwave, terahertz (THz) and optical metamaterials, optical waveguide arrays, 2D plasmonic and acoustic metamaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call