Abstract

In this work we study the asymptotic behavior of a $p$-Laplacianinclusion of the form $\displaystyle\frac{\partialu_\lambda}{\partial t} - div(D^\lambda|\nablau_\lambda|^{p-2}\nabla u_\lambda) + |u_\lambda|^{p-2}u_\lambda$ $\in F(u_\lambda) + h,$ where $p>2$, $h\in L^2(\Omega),$ with$\Omega\subset\mathbb{R}^n,\; n\geq 1,$ a bounded smooth domain,$D^\lambda \in L^\infty(\Omega)$, $\infty > M\geq D^\lambda(x)\geq \sigma >0$ a.e. in $\Omega$, $\lambda \in [0,\infty)$ and$D^\lambda\rightarrow D^{\lambda_1}$ in $L^\infty(\Omega)$ as$\lambda \to \lambda_1$, $F:\mathcal{D}(F)\subsetL^{2}(\Omega)\rightarrow\mathcal{P}(L^{2}(\Omega))$, given by$F(y(\cdot))=\{\xi(\cdot)\in L^{2}(\Omega):\xi(x)\inf(y(x))\;x\mbox{-a.e. in}\; \Omega\}$ with$f:\mathbb{R}\rightarrow\mathcal{C}_{v}(\mathbb{R})$ Lipschitz($\mathcal{C}_{v}(\mathbb{R})$ is the set of all nonempty,bounded, closed, convex subsets of $\mathbb{R}$) be a multivaluedmap. We prove the existence of a global attractor in $L^2(\Omega)$for each positive finite diffusion coefficient and we show thatthe family of attractors behaves upper semicontinuously onpositive finite diffusion parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call