Abstract

In this article, we propose a mathematical model that describes hydrodynamics and deformation mechanics within a solid tumor which is embedded in or adjacent to a healthy (normal) tissue. The tumor and normal tissue regions are assumed to be deformable and the theory of mixtures is adapted to mass and momentum balance equations for fluid flow and tissue deformation mechanics in each region. The momentum balance equations are coupled via forces that interact between the phases (fluid and solid). Continuity of normal velocities, displacements, and normal stresses along with the Beaver–Joseph–Saffman condition are imposed at the interface between the tumor and tissue regions. The physiological transport parameters (such as hydraulic resistivity or permeability) are assumed to be heterogeneous and deformation dependent which makes the model nonlinear. We establish the existence of a weak solution using Galerkin and weak convergence methods. We show further that the solution is unique and depends continuously on the given data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.