Abstract

Some approximation theoretic questions concerning a certain class of neural networks are considered. The networks considered are single input, single output, single hidden layer, feedforward neural networks with continuous sigmoidal activation functions, no input weights but with hidden layer thresholds and output layer weights. Specifically, questions of existence and uniqueness of best approximations on a closed interval of the real line under mean-square and uniform approximation error measures are studied. A by-product of this study is a reparametrization of the class of networks considered in terms of rational functions of a single variable. This rational reparametrization is used to apply the theory of Pade approximation to the class of networks considered. In addition, a question related to the number of local minima arising in gradient algorithms for learning is examined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.