Abstract

We study the initial value problem and the initial boundary value problem for nonlocal conservation laws. The nonlocal term is realized via a spatial integration of the solution between specified boundaries and affects the flux function of a given “local” conservation law in a multiplicative way. For a strictly convex flux function and strictly positive nonlocal impact we prove existence and uniqueness of weak entropy solutions relying on a fixed-point argument for the nonlocal term and an explicit Lax–Hopf-type solution formula for the corresponding Hamilton–Jacobi (HJ) equation. Using the developed theory for HJ equations, we obtain a semi-explicit Lax–Hopf-type formula for the solution of the corresponding nonlocal HJ equation and a semi-explicit Lax–Oleinik-type formula for the nonlocal conservation law.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call