Abstract

General theorems for existence and uniqueness of viscosity solutions for Hamilton–Jacobi–Bellman quasi-variational inequalities (HJBQVI) with integral term are established. Such nonlinear partial integro-differential equations (PIDE) arise in the study of combined impulse and stochastic control for jump-diffusion processes. The HJBQVI consists of an HJB part (for stochastic control) combined with a nonlocal impulse intervention term. Existence results are proved via stochastic means, whereas our uniqueness (comparison) results adapt techniques from viscosity solution theory. This paper, to our knowledge is the first treating rigorously impulse control for jump-diffusion processes in a general viscosity solution framework; the jump part may have infinite activity. In the proofs, no prior continuity of the value function is assumed, quadratic costs are allowed, and elliptic and parabolic results are presented for solutions possibly unbounded at infinity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.