Abstract

We consider the Fourier first initial-boundary value problem for a weakly coupled infinite system of semilinear parabolic differential-functional equations of reaction-diffusion type in arbitrary (bounded or unbounded) domain. The right-hand sides of the system are functionals of unknown functions of the Volterra type. Differential-integral equations give examples of such equations. To prove the existence and uniqueness of the solutions, we apply the monotone iterative method. The underlying monotone iterative scheme can be used for the computation of numerical solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.