Abstract

Abstract The Picard iteration method is used to study the existence and uniqueness of solutions for the stochastic Volterra-Levin equation with variable delays. Several sufficient conditions are specified to ensure that the equation has a unique solution. First, the stochastic Volterra-Levin equation is transformed into an integral equation. Then, to obtain the solution of the integral equation, the successive approximation sequences are constructed, and the existence and uniqueness of solutions for the stochastic Volterra-Levin equation are derived by the convergence of the sequences. Finally, two examples are given to demonstrate the validity of the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.