Abstract
In this article we study existence and uniqueness of positive solutions for elliptic systems of the form $$ \begin{align} -\Delta v = &f(x,u) \quad \hbox{in} \quad \Omega \\ -\Delta u = & v^\beta \quad \hbox{in}\quad \Omega, \end{align} $$ with Dirichlet boundary condition on a bounded smooth domain in $\Bbb R^N$. The nonlinearity $f$ is assumed to have a sub-$\beta$ growth with $\beta>0$, that in case $f(x,u)=u^\alpha, \alpha>0$, corresponds to $\alpha\beta<1$. The results are also valid for a larger class of systems, including some infinite dimensional Hamiltonian Systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.