Abstract
This paper deals with the existence and uniqueness of solution for a coupled system of Hilfer fractional Langevin equation with non local integral boundary value conditions. The novelty of this work is that it is more general than the works based on the derivative of Caputo and Riemann-Liouville, because when ? = 0 we find the Riemann-Liouville fractional derivative and when ? = 1 we find the Caputo fractional derivative. Initially, we give some definitions and notions that will be used throughout the work, after that we will establish the existence and uniqueness results by employing the fixed point theorems. Finaly, we investigate different kinds of stability such as Ulam-Hyers stability, generalized Ulam-Hyers stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.