Abstract

We investigate the existence and stability of traveling-wave solutions in a continuum field of nonlocally coupled identical phase oscillators with distance-dependent propagation delays. A comprehensive stability diagram in the parametric space of the system is presented that shows a rich structure of multistable regions and illuminates the relative influences of time delay, the nonlocality parameter and the intrinsic oscillator frequency on the dynamics of these states. A decrease in the intrinsic oscillator frequency leads to a break-up of the stability domains of the traveling waves into disconnected regions in the parametric space. These regions exhibit a tongue structure for high connectivity, whereas they submerge into the stable region of the synchronous state for low connectivity. One finding is the existence of forbidden regions in the parametric space where no phase-locked solutions are possible. We also discover a new class of nonstationary breather states for this model system that are characterized by periodic oscillations of the complex order parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call