Abstract

In the present paper, we consider a multidimensional singularly perturbed problem for an elliptic equation referred to as the stationary reaction-diffusion-advection equation in applications. We formulate basic conditions of the existence of solutions with internal transition layers (contrust structures), and we construct an asymptotic approximation of an arbitrary-order accuracy to such solutions. We use a more efficient method for localizing the transition surface, which permits one to develop our approach to a more complicated case of balanced advection and reaction (the so-called critical case). To justify the constructed asymptotics, we use and develop, to this class of problems, an asymptotic method of differential inequalities, which also permits one to prove the Lyapunov stability of such solutions, as stationary solutions of the corresponding parabolic problems.

Highlights

  • Θ)v2(ξ, θ)dξ при θ ∈ Θ0, где Θ0 – область изменения координаты θ на поверхности Ω0

  • Коэффициенты разложения (8) находятся из линейных задач для уравнения типа (12), где

Read more

Summary

Introduction

Существование и устойчивость контрастных структур в многомерных задачах реакция-диффузия-адвекция в случае сбалансированной нелинейности Н., "Существование и устойчивость контрастных структур в многомерных задачах реакция-диффузия-адвекция в случае сбалансированной нелинейности", Моделирование и анализ информационных систем, 24:1 (2017), 31–38. J=1 где li(r, θ), qji(r, θ) – известные функции, θ = (θ1, ..., θN−1) ∈ Θ , Θ – область изменения координаты θ на поверхности Ω .

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.