Abstract
For a general class of hyperbolic-parabolic systems including the compressible Navier-Stokes and compressible MHD equations, we prove existence and stability of noncharacteristic viscous boundary layers for a variety of boundary conditions including classical Navier-Stokes boundary conditions. Our first main result, using the abstract framework established by the authors in the companion work \cite{GMWZ6}, is to show that existence and stability of arbitrary amplitude exact boundary-layer solutions follow from a uniform spectral stability condition on layer profiles that is expressible in terms of an Evans function (uniform Evans stability). Whenever this condition holds we give a rigorous description of the small viscosity limit as the solution of a hyperbolic problem with "residual" boundary conditions. Our second is to show that uniform Evans stability for small-amplitude layers is equivalent to Evans stability of the limiting constant layer, which in turn can be checked by a linear-algebraic computation. Finally, for a class of symmetric-dissipative systems including the physical examples mentioned above, we carry out energy estimates showing that constant (and thus small-amplitude) layers always satisfy uniform Evans stability. This yields existence of small-amplitude multi-dimensional boundary layers for the compressible Navier-Stokes and MHD equations. For both equations these appear to be the first such results in the compressible case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.