Abstract

In this paper, we extend Walsh’s stochastic integral with respect to a Gaussian noise, white in time and with some homogeneous spatial correlation, in order to be able to integrate some random measure-valued processes. This extension turns out to be equivalent to Dalang’s one. Then we study existence and regularity of the density of the probability law for the real-valued mild solution to a general second order stochastic partial differential equation driven by such a noise. For this, we apply the techniques of the Malliavin calculus. Our results apply to the case of the stochastic heat equation in any space dimension and the stochastic wave equation in space dimension d=1,2,3. Moreover, for these particular examples, known results in the literature have been improved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.