Abstract

In this paper, we study a backward problem for an inhomogeneous fractional diffusion equation in a bounded domain. By applying the properties of Mittag‐Leffler functions and the method of eigenvalue expansion, we establish some results about the existence, uniqueness, and regularity of the mild solutions as well as the classical solutions of the proposed problem in a weighted Hölder continuous function space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.