Abstract
This paper is mainly concerned with controlled stochastic evolution equations of Sobolev type for the Caputo and Riemann–Liouville fractional derivatives. Some sufficient conditions are established for the existence of mild solutions and optimal state-control pairs of the limited Lagrange optimal systems. The main results are investigated by compactness of fractional resolvent operator family, and the optimal control results are derived without uniqueness of solutions for controlled evolution equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.