Abstract
The existence and non-existence of global solutions and theL p blow-up of non-global solutions to the initial value problemu′(t)=Δu(t)+u(t) γ onR n are studied. We consider onlyγ>1. In the casen(γ − 1)/2=1, we present a simple proof that there are no non-trivial global non-negative solutions. Ifn(γ−1)/2≦1, we show under mild technical restrictions that non-negativeL p solutions always blow-up inL p norm in finite time. In the casen(γ−1)/2>1, we give new sufficient conditions on the initial data which guarantee the existence of global solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.