Abstract

In this paper, we establish the existence and multiplicity results of solutions for parametric quasi-linear systems of the gradient-type on the Sierpinski gasket is proved. Our technical approach is based on variational methods and critical points theory and on certain analytic and geometrical properties of the Sierpinski fractal. Indeed, using a consequence of the local minimum theorem due to Bonanno, the Palais-Smale condition cut off upper at $r$, and the Palais-Smale condition for the Euler functional we investigate the existence of one and two solutions for our problem under algebraic conditions on the nonlinear part. Moreover by applying a different three critical point theorem due to Bonanno and Marano we guarantee the existence of third solution for our problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.