Abstract

In this paper, we study the existence of solutions for the following impulsive fractional boundary-value problem: $$\begin{aligned} {\left\{ \begin{array}{ll} - \frac{\mathrm{d}}{\mathrm{d}t} \Big (\frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t)) \Big ) = \lambda u (t) + f (t, u (t)), &{} t \ne t_j, \;\;\text {a.e.}\;\; t \in [0, T],\\ \Delta \Big (\frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j)) \Big ) = I_j (u (t_j)), &{} j = 1, 2, \ldots , n,\\ u (0) = u (T) = 0, \end{array}\right. } \end{aligned}$$ where \(\alpha \in (1/2, 1]\), \(0 = t_0< t_1< t_2< \cdots< t_n< t_{n +1} = T\), \(\lambda \) is a parameter and \(f :[0, T] \times {\mathbb {R}} \rightarrow {\mathbb {R}}\) and \(I_j : {\mathbb {R}} \rightarrow {\mathbb {R}}\), \(j = 1, \ldots , n\) are continuous functions and $$\begin{aligned}&\Delta \left( \frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j)) \right) \\&\quad = \frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j^+) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j^+) \\&\qquad -\, \frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j^-) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j^-) ,\\&\frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j^+) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j^+)) \nonumber \\&\quad = \lim _{t \rightarrow t_j^+} \left( \frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t))\right) ,\\&\frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j^-) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j^-)) \\&\quad = \lim _{t \rightarrow t_j^-} \left( \frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t))\right) . \end{aligned}$$ By using critical point theory and variational methods, we give some new criteria to guarantee that the impulsive problems have at least one solution and infinitely many solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call