Abstract

In this paper, we study the existence and global attractivity of positive periodic solutions of periodic n-species Lotka–Volterra competition systems. By using the method of coincidence degree and Lyapunov functional, a set of easily verifiable sufficient conditions are derived for the existence of at least one strictly positive (componentwise) periodic solution of periodic n-species Lotka–Volterra competition systems with several deviating arguments and the existence of a unique globally asymptotically stable periodic solution with strictly positive components of periodic n-species Lotka–Volterra competition system with several delays. Some new results are obtained. As an application, we also examine some special cases of the system we considered, which have been studied extensively in the literature. Some known results are improved and generalized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.