Abstract

A periodic predator-prey model has been introduced in [5] to study the effect of water level on persistence or extinction of fish populations living in an artificial lake. By using the continuation theorem of Mawhin’s coincidence degree theory, the authors give sufficient conditions for the existence of at least one positive periodic solution. In this paper we study the problem in the general case. We begin by analyzing the invariance, permanence, non-persistence and the globally asymptotic stability for the system. Most interestingly, under additional conditions, we find that the periodic solution obtained in [5] is unique. Finally, in order to make the model system more realistic, we consider the special case when the periodicity in [5] is replaced by almost periodicity. We obtain conditions for existence, uniqueness and stability of a positive almost periodic solution. The methods used in this paper will be comparison theorems and Lyapunov functions. An example is employed to illustrate our result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.