Abstract
Elemental carbon (EC) from various sources contains different sub-fractions with different properties; however, this variability poses several challenges for the accurate assessment of EC emission inventory. EC is defined using thermo-optical analysis (TOA), and its different fractions have different maturation and formation pathways. High- and low-maturity ECs have similar detection signals to those of Soot-EC and Char-EC in TOA. The emission characteristics of Soot-EC and Char-EC were affected by fuel composition and combustion temperatures. Biomass combustion generated more Char-EC than coal combustion, resulting in lower Soot-EC to Char-EC ratios. Soot-EC emissions always increased with an increasing temperature. Char-EC emissions increased with an increasing temperature at 300-900 °C in biomass combustion and decreased in coal combustion when the temperature was >600 °C, suggesting that the two ECs have different formation pathways. Time-resolved analyses of organic carbon (OC), EC, and polycyclic aromatic hydrocarbons showed that Char-EC was preferentially generated in the ignition stage with the rapid emission of OC through direct conversion of OC, whereas Soot-EC was preferentially generated during the flaming stage through gas-phase polymerization of small molecules generated from the decomposition of OC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.