Abstract

Without decomposing complex-valued systems into real-valued systems, the existence and finite-time stability for discrete fractional-order complex-valued neural networks with time delays are discussed in this paper. First of all, in order to obtain the main results, a new discrete Caputo fractional difference equation is proposed in complex field based on the theory of discrete fractional calculus, which generalizes the fractional-order neural networks in the real domain. Additionally, by utilizing Arzela–Ascoli’s theorem, inequality scaling skills and fixed point theorem, some sufficient criteria of delay-dependent are deduced to ensure the existence and finite-time stability of solutions for proposed networks. Finally, the validity and feasibility of the derived theoretical results are indicated by two numerical examples with simulations. Furthermore, we have drawn the following facts: with the lower order, the discrete fractional-order complex-valued neural networks will achieve the finite-time stability more easily.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.