Abstract
In this paper we consider a multi-dimensional wave equation with dynamic boundary conditions related to the Kelvin–Voigt damping and a delay term acting on the boundary. If the weight of the delay term in the feedback is less than the weight of the term without delay or if it is greater under an assumption between the damping factor, and the difference of the two weights, we prove the global existence of the solutions. Under the same assumptions, the exponential stability of the system is proved using an appropriate Lyapunov functional. More precisely, we show that even when the weight of the delay is greater than the weight of the damping in the boundary conditions, the strong damping term still provides exponential stability for the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.