Abstract

We show the existence of global-in-time weak solutions to a general class of coupled Hookean-type bead-spring chain models that arise from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The class of models involves the unsteady incompressible Navier–Stokes equations in a bounded domain in ℝd, d = 2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress tensor appearing on the right-hand side in the momentum equation. The extra-stress tensor stems from the random movement of the polymer chains and is defined by the Kramers expression through the associated probability density function that satisfies a Fokker–Planck-type parabolic equation, a crucial feature of which is the presence of a center-of-mass diffusion term. We require no structural assumptions on the drag term in the Fokker–Planck equation; in particular, the drag term need not be corotational. With a square-integrable and divergence-free initial velocity datum ṵ0for the Navier–Stokes equation and a non-negative initial probability density function ψ0for the Fokker–Planck equation, which has finite relative entropy with respect to the Maxwellian M, we prove, via a limiting procedure on certain regularization parameters, the existence of a global-in-time weak solution t ↦ (ṵ(t), ψ(t)) to the coupled Navier–Stokes–Fokker–Planck system, satisfying the initial condition (ṵ(0), ψ(0)) = (ṵ0, ψ0), such that t ↦ ṵ(t) belongs to the classical Leray space and t ↦ ψ(t) has bounded relative entropy with respect to M and t ↦ ψ(t)/M has integrable Fisher information (with respect to the measure [Formula: see text]) over any time interval [0, T], T>0. If the density of body forces [Formula: see text] on the right-hand side of the Navier–Stokes momentum equation vanishes, then a weak solution constructed as above is such that t ↦ (ṵ(t), ψ(t)) decays exponentially in time to [Formula: see text] in the [Formula: see text]-norm, at a rate that is independent of (ṵ0, ψ0) and of the center-of-mass diffusion coefficient. Our arguments rely on new compact embedding theorems in Maxwellian-weighted Sobolev spaces and a new extension of the Kolmogorov–Riesz theorem to Banach-space-valued Sobolev spaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.