Abstract
A kinetic equation with a relaxation time model for wave-particle collisions is considered. Similarly to the BGK-model of gas dynamics, it involves a projection onto the set of equilibrium distributions, nonlinearly dependent on moments of the distribution function. An earlier existence result is extended to bounded domains with reflecting boundaries and to initial conditions permitting vacuum regions. The long time behaviour is investigated. Convergence on compact time intervals (shifted to infinity) to the set of equilibrium solutions is proven. The set of smooth equilibrium solutions is computed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.