Abstract
In this paper, we show a relationship between strictly convexity of type (I) and (II) defined by Takahashi and Talman, and we prove that any uniformly convex metric space is strictly convex of type (II). Continuity of the convex structure is also shown on a compact domain. Then, we prove the existence of a minimum point of a convex, lower semicontinuous and d-coercive function defined on a nonempty closed convex subset of a complete uniformly convex metric space. By using this property, we prove fixed point theorems for (α, β)-generalized hybrid mappings in uniformly convex metric spaces. Using this result, we also obtain a common fixed point theorem for a countable commutative family of (α, β)-generalized hybrid mappings in uniformly convex metric spaces. Finally, we establish strong convergence of a Mann type iteration to a fixed point of (α, β)-generalized hybrid mapping in a uniformly convex metric space without assuming continuity of convex structure. Our results can be applied to obtain the existence and convergence theorems for (α, β)-generalized hybrid mappings in Hilbert spaces, uniformly convex Banach spaces and CAT(0) spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.