Abstract

A 2-coupled nonlinear Schrodinger equations with bounded varying potentials and strongly attractive interactions is considered. When the attractive interaction is strong enough, the existence of a ground state for sufficiently small Planck constant is proved. As the Planck constant approaches zero, it is proved that one of the components concentrates at a minimum point of the ground state energy function which is defined in Section 4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.