Abstract

In this paper we consider some fundamental properties of a new type of nonlocal reaction-diffusion equation originally proposed a few years ago in [N. J. Armstrong, K. J. Painter, and J. A. Sherratt, J. Theoret. Biol., 243 (2006), pp. 98–113] as a possible continuum mathematical model for cell-cell adhesion. The basic model is on an infinite domain and contains a nonlocal flux term which models the component of cell motion attributable to the cell having formed bonds with nearby cells within its sensing radius, and the nonlocal term is both nonlinear and involves spatial derivatives, making the analysis challenging. We establish the local existence of a classical solution working in spaces of uniformly continuous functions. We then establish that the model has a positivity preserving property and we find bounds on the solution, and we then establish the existence of a unique global solution in each of the biologically realistic cases when the cell density $n(x,t)$ satisfies $n(x,0)\rightarrow0$ and $n(x,0...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.