Abstract

Emplacement of granitoid magmas and simultaneous exhumation of deeply buried rocks has been investigated along the western part of the Central Bohemian shear zone (CBSZ, Bohemian Massif). Combined structural, petrological and geochronological data of the steeply dipping shear zone suggest complex uplift and exhumation of deeply buried, high-temperature Moldanubian rocks, resulting in the juxtaposition against the supracrustal Tepla-Barrandian unit. Uplift of Moldanubian rocks from depths of probably more than 30 km was initiated after crustal stacking in Upper Devonian times. Syntectonic Lower Carboniferous emplacement of the Klatovy pluton into the pre-existing shear zone led to melt-controlled strain softening and localization. However, the major part of the total displacement of the CBSZ was accommodated within a late- to post-intrusive high-temperature shear zone in the uprising Moldanubian unit and a post-intrusive unexposed fault zone in the Klatovy pluton, respectively. During uplift of the Moldanubian rocks, strain was strongly partitioned into melt-bearing zones (Klatovy pluton, migmatites of the Moldanubian unit) resulting in a repeated shift of deformation in space and time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call