Abstract

AbstractThrusting implication in the crustal thickening history of eastern Tibet is highly debated. The ∼250 km‐long Muli thrust of the Yalong thrust belt in SE Tibet is a major Miocene structure with a pronounced topographic step (∼2,000 m). Using thermo‐kinematic modeling based on thermochronology data, we constrain the crustal geometry of the thrust as being steep (>70°) at the surface, in agreement with field observations, and flattening at depth (≥20 km) on an intra‐crustal décollement. Thrusting motion on the fault shows a velocity of 0.2 ± 0.06 km/Ma since 50 Ma, followed by an acceleration at a rate of 0.6 ± 0.08 km/Ma starting at 12.5 ± 1 Ma, yielding a total of ∼15 km of exhumed crust. Deeper, deformation may be localized through a ductile shear zone, and be related to the ∼15 km Moho step and shear wave velocity contrast imaged by tomography beneath the Yalong thrust belt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.