Abstract

How many near-neighbors does a molecule have? This fundamental question in chemistry is crucial for molecular optimization problems under the similarity principle assumption. Generative models can sample molecules from a vast chemical space but lack explicit knowledge about molecular similarity. Therefore, these models need guidance from reinforcement learning to sample a relevant similar chemical space. However, they still miss a mechanism to measure the coverage of a specific region of the chemical space. To overcome these limitations, a source-target molecular transformer model, regularized via a similarity kernel function, is proposed. Trained on a largest dataset of ≥200 billion molecular pairs, the model enforces a direct relationship between generating a target molecule and its similarity to a source molecule. Results indicate that the regularization term significantly improves the correlation between generation probability and molecular similarity, enabling exhaustive exploration of molecule near-neighborhoods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.